
36-bit computing at DEC

Angelo Papenhoff/aap (pdp-6.net)

2018-07-15

http://pdp-6.net


Who am I?

got interested in the history of UNIX
UNIX ran on a PDP-11 (a nice machine)
the “11” implies there must more PDPs
learned about the mythical PDP-10
got to touch and play with a PDP-10 panel!
Steven Levy’s book ”Hackers” did the rest



PDPs

PDP-1: 18 bit, 4k, inspired by the earlier TX-0
PDP-2: never built (24 bit PDP-1?)
PDP-3: designed; built once by customer (36 bit PDP-1)
PDP-4: 18 bit, 8k: new design, trade one opcode bit for
one address bit
PDP-5: 12 bit, 4k: condensed PDP-4
PDP-6: 36 bit, 256k: different design, fast ACs, indexing
PDP-7, -9, -15: PDP-4 architecture
PDP-8,-12: PDP-5 architecture
PDP-10: PDP-6 architecture
PDP-11: 16 bit, 64k, byte addressed, 8 registers
PDP-13: not designed
PDP-14: not like the others



PDP-6: Development

DEC wanted to build a bigger machine
Gordon Bell: architect
Alan Kotok: assistant (later chief engineer of the PDP-10)
many others...
input from MIT hackers:
a platform on which to implement LISP
→ needs space for two addresses per word
→ grows from 24 to 36 bits
all previous PDPs accumulator machines:
Peter Samson proposes accumulators/index registers
brochure from 1963 describes older design
PDP-6 is recognizable but different







PDP-6: Architecture

36 bit words
18 bit address space (256kw, “moby”)
→ two addresses per word (for LISP)
low 16 memory locations are fast memory:
accumulators, index registers, memory
user and executive mode
memory relocation and protection in user mode
special IO instructions
manipulate parts of words (bytes) with special byte
pointers
regular instruction set: lots of nonsensical combinations



PDP-6: Instruction Set

Effective address calculation for every instruction:
if X = 0: E := Y
else: E := (X) + Y
if I: fetch (E) and repeat (endless loop possible!)
Two operands: AC and E



PDP-6: Full word move

MOVE: move word
MOVS: move word, swap halves
MOVM: move word magnitude
MOVN: move word negated
modes:
-: (E) → (AC)
I(mmediate): 0,E → (AC)
M(emory): (AC) → (E)
S(elf): (E) → (E)/(AC)



PDP-6: Half word move

move left/right half to left/right half and ...
-: don’t modify other half
Z: set other half to zero
O: set other half to one
E: set other half to sign
modes: -, I, M, S
HLLO: greetings!



PDP-6: Fixed point arithmetic

ADD: add
SUB: subtract
IMUL: multiply (one word product)
MUL: multiply (two word product)
IDIV: divide (one word dividend)
DIV: divide (two word dividend)
modes:
-, I, M, B(oth)



PDP-6: Floating point arithmetic

FAD: add
FSB: subtract
FMP: multiply
FDV: divide
(R)ound
modes:
-, I, M, B(oth)
FSC: scale by power of two



PDP-6: Arithmetic comparison

CAI, CAM: compare AC and Immediate/Memory. skip
on condition
JUMP, AOJ, SOJ: (add/subtract one to/from AC and)
jump on condition
SKIP, AOS, SOS: (add/subtract one to/from (E) and) skip
on condition
conditions (always signed!):
-: never
A: always
E, N, L, LE, G, GE: what you expect



PDP-6: Boolean

all operations can complement the output (different
mnemonics)
SETZ/SETO: set to zero/one
AND/ORCB: and/or compl. both
ANDCA/ORCM: and compl. AC/or compl. mem
SETM/SETCM: set to mem/compl. mem
ANDCM/ORCA: and compl. memory/or compl. AC
SETA/SETCA: set to AC/compl. AC
XOR/EQV: exclusive or/equivalent
IOR/ANDCB: inclusive or/and compl. both
modes: -, I, M, B
standardized in Common Lisp!!



PDP-6: Testing and modification

Test AC with right/left/direct/direct swapped word and...
N: do nothing
Z: zero bits
C: complement bits
O: set bits (to one)
...skip if: -, A, E, N
TRON: 666



PDP-6: Byte operations

IBP: increment byte pointer
LDB: load byte
DPB: deposit byte
ILDB, IDPB: increment and load/deposit byte



PDP-6: Misc instructions

ASH, LSH, ROT: shift, rotate. -C: two ACs combined
EXCH: exchange AC and (E)
BLT: block transfer
AOBJP/N: add one to both halves and jump if
positive/negative
JRST: jump and reset
JFCL: jump and clear flags
XCT: execute
PUSH/POP: push/pop word
PUSHJ/POPJ: push/pop and jump (stack based calls)
JSR, JSP, JSA, JRA: other subroutine jumps



PDP-6: Microarchitecture

PDP-6 and KA10 are asynchronous:
no single central clock
instead: chain of delay elements
main cycles:
K(ey)
M(emory) C(ontrol)
for each instruction:
I(nstruction fetch)
A(ddress computation)
F(etch operands)
E(xecute)
S(tore result)
various timing chains for non-trivial instructions



PDP-6: Simplified block diagram



PDP-10: Simplified block diagram (KA10)



PDP-6: Microarchitecture

Hardware subroutines:

IT1:
MA <- PC
IF1A <- 1
trigger MC READ RQ PULSE

IT1A:
IF1A <- 0
(instruction is now in MB)
...

MC READ RQ PULSE:
...
talk to memory

to read word at MA
into MB

...
MC RST1:

if IF1A -> trigger IT1A

Used for memory access, addition/subtraction and all kinds
of non-trivial instructions



Bootstrapping the PDP-6

while the PDP-6 was being built, an assembler running on
the PDP-4 was used to write code
MIT people wrote LISP SUBRs on a blackboard and tested
them on the prototype at DEC
at MIT, no text editor running on the PDP-6 at first.
Written over the weekend when DEC came to take away
the PDP-1: TECO
generally DEC and MIT people worked closely together



MIT software library

TECO: text editor
MIDAS: assembler
DDT: debugger
MACDMP: DECtape loader/dumper
MACLISP
later ITS (→ Lars’ talk)
MACHACK VI: chess
display hacks
music
various AI stuff



DEC software library

DECDMP: DECtape loader/dumper
MONITOR, later TOPS-10
EDITOR
MACRO assembler
LOADER
PIP: peripheral interchange program
TECO and DDT from MIT
FORTRAN II and IV
...



PDP-6: A failure (?)

PDP-6 was built only 23 times
hard to maintain and very flakey
financial disaster for DEC
the architecture was loved and had potential
DEC engineers start work on the PDP-10: same
architecture but implemented better



PDP-10: A success

Ken Olsen does not want another big computer and is
tricked by making parts of the machine optional
PDP-10 is a success
DEC sold four generations: KA10, KI10, KL10, KS10
killed off in the early 80s in favour of the VAX
other companies make and sell their own PDP-10
implementations
as of today, the only PDP architecture that is not legacy!
lives on in XKL network gear


